
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6148 253

Review on Compute Analysis of Routing

Algorithm for Wireless Sensor Networks

Prof. S.M. Patil
1
, Sheetal Ragit

2

Assistant Professor, Electronic and Telecommunication, Government College of Engineering, Jalgaon, India
 1

Student, Electronic and Telecommunication, Government College of Engineering, Jalgaon, India
 2

Abstract: Recent significant research on wireless sensor networks (WSNs) has led to the widespread adoption of

software defined wireless sensor networks (SDWSNs), which can be reconfigured even after deployment. In this paper,

we propose an energy-efficient routing algorithm for SDWSNs. In this algorithm, to make the network to be functional,

control nodes are selected to assign different tasks dynamically. The selection of control nodes is formulated as an NP-

hard problem, taking into consideration of the residual energy of the nodes and the transmission distance. To tackle the

NP-hard problem, an efficient particle swarm optimization (PSO) algorithm is proposed. Simulation results show that

the proposed algorithm performs well over other comparative algorithms under various scenarios.

Keywords: SDWSNs, sensing tasks, control nodes, residual energy, transmission distance, PSO.

I. INTRODUCTION

The emergence of big data and cloud technology has

driven a fast development of wireless sensor networks

(WSNs). A sensor node is normally comprised of one or

more sensor units, a power supply unit, a data processing

unit, data storage, and a data transmission unit [1]. A

wireless sensor network is a collection of wireless nodes

with limited energy that may be mobile or stationary and

are located randomly in a dynamically changing

environment. Wireless sensor networks hold the promise

of revolutionizing the way we observe and interact with

the physical world in a wide range of application domains

such as environmental sensing, habitat monitoring and

tracking, military defense, etc. The characteristics of low-

cost, low-power, and multifunctional sensor have attracted

a great deal of research attention, in that sensor nodes can

perform intelligent cooperative tasks under stringent

constrains in terms of energy and computational resources.

However, most previous research work only considers the

scenario where a WSN is dedicated to a single sensing

task, and such application-specific WSN is prone to high

deployment costs, low service reutilization and difficult

hardware recycling [2]. A software-defined wireless

sensor network (SDWSN) consists of software-defined

sensor nodes that can dynamically reconfigure their

functionalities and properties. by loading different

programs on-demand according to real time sensing

requests. SDWSNs are emerging as a compelling solution

to tackle the above issues. A software-defined sensor node

equipped with several different types of sensors is able to

undertake a variety of sensing tasks according to deployed

and activated programs. In recent years, especially due to

the advent of forth coming 5G networks, a number of

prototypes have been practically implemented. SDWSNs

enable programmable control in network and virtualization

of network equipment by decoupling the control plane and

data plane [2]. In SDWSNs, control intelligence is taken

out from data plane devices and implemented in a

logically centralized controller (network operating system,

however can be formed by distributed clusters), which

interacts with data plane devices through standard

interfaces. Network operators run software programs on

the controller to automatically manage data plan devices

and optimize network resource usage [1]. This architecture

enables up-to-date control schemes to be developed and

deployed so as to enable new smart sensing services,

making simplified network management in WSNs, which

makes the future of SDWSNs bright [3]. However, to

realize the aforementioned advantages of SDWSNs is not

without challenges. In a sensor network, each node acts as

both a sensor and router, with limited computing and

communications capabilities, and storage capacity.

However, in many WSN applications, the deployment of

sensor nodes is performed in harsh environments, which

makes sensor replacement difficult and expensive [4].

Thus, in many scenarios, wireless nodes must operate

without battery replacement for a long period of time.

Consequently, the energy constraint is vital for the design

of WSNs and SDWSNs. In an SDWSN, although different

virtual networks can work together on top of the same

physical infrastructure, the centralized control plane may

lead to high energy costs due to information collection to

reach a global view, and multiple virtual networks may

compete for common physical network resources.

Therefore, resource utilization of the SDWSN also needs

to be carefully designed. In this paper, we consider the

SDWSN as illustrated in Fig. 1 which consists of a sensor

control server and a set of software-defined sensor nodes.

The large scales of deployed nodes that are equipped with

multi-functions are able to execute multi-tasks

simultaneously. For example, a software defined node can

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6148 254

monitor the temperature and humidity at the same time.

The sensor control server can reprogram some sensor

nodes by distributing a corresponding program to them for

the tasks. We divide the sensor nodes into clusters, each of

which consists of a control node and a number of common

nodes with different tasks, aiming at balancing the energy

consumption of sensor nodes and avoiding the collision of

data transmission. Like TinyOS [1], every SDWSN OS

can support multi-tasking that executes independently and

non preemptively.

Traditional routing protocols in WSNs consume more

energy for multi-tasking sensor networks because of the

inflexibility. Therefore, based on the above architecture,

we propose a new energy-efficient routing algorithm for

software defined wireless sensor networks. Traditional

routing protocols in WSNs consume more energy for

multi-tasking sensor networks because of the inflexibility.

Fig. 1 An example of the software-defined sensor network

with multi-tasks

Traditional routing protocols in WSNs consume more

energy for multi-tasking sensor networks because of the

inflexibility. Therefore, based on the above architecture,

we propose a new energy-efficient routing algorithm for

software defined wireless sensor networks. The control

server selects the control nodes of each cluster, and the

control nodes instruct the intra-cluster nodes to complete

different tasks. In this project, we are motivated to

investigate how to minimize the energy consumption if

reprogramming by considering the control nodes’

selection and multicasting routing[1]. Our main

contributions are summarized as follows:

 We propose an energy-efficient routing algorithm for

the multi-tasking SDWSNs. The selection of control

nodes is formulated as an NP-hard problem, taking into

account the residual energy of the nodes and the

transmission distance; and

 To tackle the NP-hard problem, we propose an efficient

particle swarm optimization (PSO) algorithm solve it.

II. OBJECTIVE

The design of Energy efficiency wireless sensor network

is a challenging research since battery is consider as power

source to the sensor nodes. Recharging battery is very

difficult and impossible in some cases. Methods/ Analysis:

In Wireless sensor networks, clustering techniques consist

of partitioning the network into a various number of sensor

groups called clusters. The clustering technique selects the

cluster heads in the rotation manner to perform data

aggregation operation.

Findings: To prolong the lifespan of a network, sensor

nodes are scheduled to sleep dynamically. Sleep

Scheduling (SS) mechanism is the most widely used

technique for efficiently managing network energy

consumption. In this paper, we provide a survey on

energy-efficient scheduling mechanisms in Wireless

sensor networks that has different network architecture

than the traditional Wireless Sensor Networks.

III. LITERATURE SURVEY

A. RELATED WORK

1. Overview of Software-Defined Wireless Sensor

Network

Overview of software-defined wireless sensor network the

software-defined wireless sensor network represents a new

paradigm shift that offers a significant promise to

ubiquitous sensing and sensory data access through

sensing as- a-service. Fig. 2 illustrates the logical view of

the SDWSN.

Fig. 2 A logical view of the SDWSN

There are a few pioneering investigations that have been

studied in the literature. Lecointre et al. [1] propose a

software-defined radio interface for wireless sensor

networks. Rossi et al. [2] present a system dubbed

SYNAPSE++ for over-the-air reprogramming of wireless

sensor networks.

In [3], a die-hard sensor network is described, which can

automatically monitor a disasterhit region by scattering

many sensor nodes in the region. A TinyOS-based SDN

framework that allows for multiple controllers within the

WSN is presented in [4], which is hardware independent.

Huang et al. propose a SDWSN prototype to improve the

adaptability of WSNs for environmental monitoring

applications, taking account of some constraints. The

above existing works have demonstrated the feasibility of

the SDWSN. Different from the above studies, this project

focuses upon the energy efficiency in the network layer of

the SDWSN, as shown in Fig. 2.1, as well as a particular

emphasis on multi-task scheduling.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6148 255

2. WSN Routing Algorithm

Routing is important in the WSN in determining the

optimum routing paths of data packets, and there have

been a great number of popular routing algorithms for the

WSN. Ad hoc On-demand Distant Vector (AODV) [5]

was proposed in 1999, and became an IETE standard. It is

a routing algorithm in consideration of the distance

between the nodes. Its quick adaption to link conditions,

low memory usage and low network utilization make the

ADOV algorithm popular.

However, the number of flooding messages increases

significantly thanks to the increasing routing request

messages. Clustering protocols can aid in data aggregation

through efficient network organization. Low-energy

adaptive clustering hierarchy (LEACH) [8] is one of the

most well-known WSN hierarchical routing algorithms,

which selects the cluster headers (CHs) based on a

predetermined probability in order to rotate the CH role

among the sensor nodes and to avoid fast depletion of the

CH’s energy. LEACH operates in two phases, i.e., the

cluster setup phase and the steady phase. In the cluster

setup phase, the cluster heads are selected and then

broadcast to other nodes. In the steady state phase, actual

transmission of data occurs.

However, the study of LEACH considers only energy

consumption in receiving the advertisements from the CHs

at each sensor node during the setup phase. The number of

the cluster heads varies and the CHs do not have a good

distribution. Furthermore, LEACH requires the

transmission between the cluster heads and the sink to be

completed in a single hop, which consumes a large

quantity of energy and disrupts the energy balancing of

nodes if the CHs are located far away from the sink. In [7],

DF-LEACH is proposed as an improvement of LEACH,

which takes into account the distance of the CH to the sink

node, and thus saves communications energy. In [8], a

hybrid energy-efficient distributed clustering approach

(HEED) is proposed. The initial probability for each

sensor to become a cluster head is dependent of its

residual energy, and the performance results are fairly

good. Hausdorff uses a greedy algorithm to select the

cluster heads based on residual energy and location

information, and this method can significantly prolong the

network lifetime. In [9], an unequal cluster-based routing

protocol is proposed, which focuses on load balancing in

order to address the hot-spot issue. Mottola et al. [10]

propose an adaptive energy-aware multi-sink routing

algorithm, which is expressly designed for many-to-many

communications. In [11], the authors address the issue of

load balancing through considering different hop distances

for the clusters. EDIT [13] is proposed to select the cluster

head based on not only energy but also delay. The

traditional routing algorithms are unable to adapt to the

flexibility of SDWSNs. Consequently, we propose a new

routing algorithm for the SDWSN, which can

accommodate the SDWSN’s conditions flexibly and helps

achieve better results.

IV. SYSTEM DEVELOPMENT

A. NETWORK MODEL

In this paper, we consider the network architecture as

shown in Fig. 1. G = (V;L) denotes the directed graph

representing the network. V is the vertex set, including one

control sever and a number of sensor nodes distributed

within the monitoring field randomly. L is the set of

directed links. The following assumptions on the sensor

network and sensor nodes under consideration in this

paper are made:

 We consider a set of _ sensing targets, e.g.,

temperature, humidity, and so on, which are randomly

distributed within the same region of the SDWSN [11].

 The resources in a sensor node should be managed,

controlled and allocated in an orderly manner in

support of various sensing tasks. Besides, to complete

different tasks, corresponding programs are stored on

the sensor nodes [1], and the sensor node shall allow

application programmers to adjust the sensor

functionalities via invoking different programs.

 Each sensor node has the same ability to operate either

in the sensing mode to perceive the environmental

parameters or in the communications mode to send

data among each other, or directly to the control server,

and each node can gather data packets from a cluster

member when acting as the control node. And each

sensor node is assigned a unique identifier (ID).

 The sensor nodes and control server are stationary after

deployment, which is typical for sensor network

applications.

 Initial energy is fair to each sensor node, and the

network is considered homogeneous;

 All the nodes are left unattended without battery

replacement after deployment.

 Nodes are location-unaware, i.e., not equipped with

GPS capable antennae or other similar equipment, and

each node is assigned a number according to its

location.

 The links between the nodes are symmetric. A node

can estimate the distance to another node based only on

the received signal power.

 The control server is externally powered.

B. LEACH PROTOCOL

LEACH Protocol is a typical representative of hierarchical

routing protocols. It is self adaptive and self-organized.

LEACH protocol uses round as unit, each round is made

up of cluster set-up stage and steady-state stage[8], for the

purpose of reducing unnecessary energy costs, the steady

state stage must be much longer than the set-up stage. The

process of it is shown in Figure 3.

At the stage of cluster forming, a node randomly picks a

number between 0 to 1, compared this number to the

threshold values t(n) , if the number is less than t(n) , the

it become cluster head in this round, else it become

common node.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6148 256

Fig.3. LEACH Protocol Process

Threshold t(n) is determined by the following:

Where p is the percentage of the cluster head no des in all

nodes, r is the number of the round, G is the collections of

the nodes that have not yet been head nodes in the first 1/P

rounds. Using this threshold, al l nodes will be able to be

head nodes after 1/P rounds. The analysis is as follows:

Each node becomes a cluster head with probability p when

the round begins, the nodes which have been head nodes

in this round will not be head nodes in the next 1/P rounds,

becausee the number of the nodes which is capable of

head node will gradually reduce, so, for these remain

nodes, the probability of being head nodes must be

increased. After 1/P-1 round, all nodes which have not

been head nodes will be selected as head nodes with

probability 1, when 1/P rounds finished, all nodes will

return to the same starting line. When clusters have

formed, the nodes start to transmit the inspection data.

Cluster heads receive data sent from the other nodes, the

received data was sent to the gateway after fused. This is a

frame data transmission. In order to reduce unnecessary

energy cost, steady stage is composed of multiple frames

and the steady stage is much longer than the set-up stage.

C. ROUTING ALGORITHM BASED ON PSO
Particle swarm optimization (PSO) is a population based

stochastic optimization technique developed by Dr.

Eberhart and Dr. Kennedy in 1995, inspired by social

behaviour of bird flocking or fish schooling.PSO shares

many similarities with evolutionary computation

techniques such as Genetic Algorithms (GA). The system

is initialized with a population of random solutions and

searches for optima by updating generations. However,

unlike GA, PSO has no evolution operators such as

crossover and mutation. In PSO, the potential solutions,

called particles, fly through the problem space by

following the current optimum particles. The detailed

information will be given in following sections. Compared

to GA, the advantages of PSO are that PSO is easy to

implement and there are few parameters to adjust. PSO

has been successfully applied in many areas: function

optimization, artificial neural network training, fuzzy

system control, and other areas where GA can be applied

[12].

1. PSO Algorithm

As stated before, PSO simulates the behaviours of bird

flocking. Suppose the following scenario: a group of birds

are randomly searching food in an area. There is only one

piece of food in the area being searched. All the birds do

not know where the food is. But they know how far the

food is in each iteration. So what's the best strategy to find

the food? The effective one is to follow the bird which is

nearest to the food. PSO learned from the scenario and

used it to solve the optimization problems. In PSO, each

single solution is a "bird" in the search space. We call it

"particle". All of particles have fitness values which are

evaluated by the fitness function to be optimized, and have

velocities which direct the flying of the particles[9]. The

particles fly through the problem space by following the

current optimum particles. PSO is initialized with a group

of random particles (solutions) and then searches for

optima by updating generations. In the every iteration,

each particle is updated by following two "best" values.

The first one is the best solution (fitness) it has achieved

so far. (The fitness value is also stored.) This value is

called pbest. Another "best" value that is tracked by the

particle swarm optimizer is the best value, obtained so far

by any particle in the population. This best value is a

global best and called gbest[10]. When a particle takes

part of the population as its topological neighbours, the

best value is a local best and is called lbest. After finding

the two best values, the particle updates its velocity and

positions with following equation (a) and (b).

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand()

*(gbest[]-present[])…..(a)

present[]=persent[]+v[]...... (b)

v[] is the particle velocity, persent[] is the current particle

(solution). pbest[] and gbest[] are defined as stated before.

rand () is a random number between (0,1). c1, c2 are

learning factors. Usually c1 = c2 = 2[12].

The pseudo code of the procedure is as follows.

For each particle

 Initialize particle

END

Do

 For each particle

 Calculate fitness value

 If the fitness value is better than the best fitness value

(pBest) in history set current value as the new pBest

End

Choose the particle with the best fitness value of all the

particles as the gBest For each particle

Calculate particle velocity according equation (a)

Update particle position according equation (b)

End

While maximum iterations or minimum error criteria is

not attained [13].

Particles' velocities on each dimension are clamped to a

maximum velocity Vmax. If the sum of accelerations

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6148 257

would cause the velocity on that dimension to exceed

Vmax, which is a parameter specified by the user. Then

the velocity on that dimension is limited to Vmax.

Particle swarm optimization (PSO) [5] is a population

based stochastic optimization technique developed by

Eberhart and Kennedy in 1995, inspired by the social

behavior of birds flocking or fish schooling. PSO begins

with a group of random particles (random solutions),

aiming at finding out the optimum solution through an

iterative process.

Fig. 4. Flowchart of the PSO Algorithms

Each particle has a fitness value, which will be evaluated

by the fitness function to be optimized in each generation

[1]. During the search process, each particle in the

population consists of a d-dimensional vector including

the velocity vector vi = [vi1; vi2; :::; vid], the current

position vector (pBest) xi = [xi1; xi2; :::; xid], and the

previous best position vector pi = [pi1; pi2; :::; pid], where

d is the dimensionality of the search space. What’s more,

the whole population maintains a global best-so-far

population vector pg = [Pg1; pg2; :::; pgd] [3]. The

flowchart of PSO is shown in Fig. 4. As can be seen from

the figure, during each iteration of the evolutionary

process in PSO, each particle learns from its own search

experience pBest and the swarm’s search experience gBest

to update its velocity vi and position xi [12, 13]. During

the iterations, the velocity of the particle is updated

according to the following

vid(t+1) = wvid(t)+c1(pid -xid(t))+c2_(pgd -xid(t))……(5)

The position of the particle is updated as follows

xid(t + 1) = xid(t) + vij(t)…..(6)

where the representation of vid is similar to that of xid; Pid

and Pgd are the d
th

 dimension of the i
th

 particle’s velocity.

Coefficients _ and _ are two randomly generated values

within the range of [0; 1] for the d
th

 dimension. c1 and c2

are two acceleration parameters which are commonly set

to 2.0 or adaptively controlled according to the

evolutionary states. Factor w is the inertial weight, which

plays the role of controlling the impact of the previous

velocity of a particle on the current one so as to balance

between global search (large inertial weight) and local

search (small inertial weight). However, PSO exhibits

poor local search ability and often leads to premature

convergence, especially in complex multipeak search

problems. To tackle this issue, this paper proposes a

method which adapts itself nonlinearly as follows

w = (wmax- wmin � d1)* e
1/1+d

2
*t/K

 ……(7)

where wmax and wmin represent the maximum and minimum

inertial weights and are always set to 0.9 and 0.4,

respectively. K is the maximum number of allowed

iterations while t represents the current iteration. d1 and d2

are two control factors which control the value of w

between wmin and wmax. The execution of the algorithm is

comprised of two phases, i.e., the control nodes’ selection

phase and the data transmission phase. The two phases are

performed in each round of the network operation and

repeated periodically. We elaborate on how to use the non-

linear weight particle swarm optimization algorithm

(NWPSO) to select the control nodes in the next section.

2. Program

clc;

clear all;

close all;

swarm_size = 64;

maxIter = 50;

inertia = 1.0;

correction_factor = 2.0;

a = 1:8;

[X,Y] = meshgrid(a,a);

C = cat(2,X',Y');

D = reshape(C,[],2);

swarm(1:swarm_size,1,1:2) = D

swarm(:,2,:) = 0;

swarm(:,4,1) = 1000;

plotObjFcn = 0;

objfcn = @(x)(x(:,1) - 20).^2 + (x(:,2) - 25).^2;

for iter = 1:maxIter

 swarm(:, 1, 1) = swarm(:, 1, 1) + swarm(:, 2, 1)/1.3;

swarm(:, 1, 2) = swarm(:, 1, 2) + swarm(:, 2, 2)/1.3;

 x = swarm(:, 1, 1);

 y = swarm(:, 1, 2);

 fval = objfcn([x y]);

 for ii = 1:swarm_size

 if fval(ii,1) < swarm(ii,4,1)

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 1, January 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6148 258

 swarm(ii, 3, 1) = swarm(ii, 1, 1);

swarm(ii, 3, 2) = swarm(ii, 1, 2);

swarm(ii, 4, 1) = fval(ii,1);

 end

 end

 [~, gbest] = min(swarm(:, 4, 1));

swarm(:, 2, 1) = inertia*(rand(swarm_size,1).*swarm(:, 2,

1)) + correction_factor*(rand(swarm_size,1).*(swarm(:, 3,

1) ... - swarm(:, 1, 1))) +correction_factor*

(rand(swarm_size,1).*(swarm(gbest, 3, 1) - swarm(:, 1,

1)));

 swarm(:, 2, 2) = inertia*(rand(swarm_size,1).*swarm(:,

2, 2)) + correction_factor*(rand(swarm_size,1).*(swarm(:,

3, 2) .. - swarm(:, 1, 2))) + correction_factor*

(rand(swarm_size,1).*(swarm(gbest, 3, 2) - swarm(:, 1,

2)));

clf;plot(swarm(:, 1, 1), swarm(:, 1, 2), 'bx'); axis([-2 40

-2 40]);

 pause(.1);

disp(['iteration: ' num2str(iter)]);

end

3. Simulation Result of PSO

Figure 5 and 6 shows the result of PSO algorithm with

multiple and single partical.

Fig.5 simulation result of PSO for swarm node

Fig. 6 Output of Single Node Based on Velocity and

Position

REFERENCES

[1]. Wei Xiang, Senior Member, IEEE, Ning Wang, and Yuan Zhou,

Member, IEEE “An Energy-efficient Routing Algorithm for

Software-defined Wireless Sensor Networks” Citation information:
DOI 10.1109/JSEN.2016.2585019, IEEE Sensors

[2]. N. Lavanya* and T. Shankar “A Review on Energy-Efficient

Scheduling Mechanisms in Wireless Sensor Networks” Indian
Journal of Science and Technology, Vol 9(32), DOI:

10.17485/ijst/2016/v9i32/86910, August 2016.

[3]. M. Chen, Y. Zhang, Y. Li, M. Hassan, and A. Alamri, “AIWAC:
affective interaction through wearable computing and cloud

technology,” IEEE Wireless Communications, vol. 22, no. 1, pp.

20–27, Feb. 2015.
[4]. Poojarini Mitra,Sinthia Roy “ A Reliable and Energy Efficient

Enhancement of Data MULEs Protocol for Wireless Sensor

Network” International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 5, Issue 5, May 2015.

[5]. Rajat Kandpal*, Rajesh Singh, H L Mandoria “Energy Efficient

Routing in Random Deployment of Wireless Sensor Networks”
International Journal of Emerging Research in Management

&Technology ISSN: 2278-9359 (Volume-4, Issue-9) September

2015.
[6]. D. Zeng, P. Li, S. Guo, and T. Miyazaki, “Minimum-energy

reprogramming with guaranteed quality-of-sensing in software-

defined sensor networks,” in 2014 IEEE International Conference
on Communications (ICC), Sydney, Australia. IEEE, June 2014,

pp. 288–293.

[7]. K.-B. Lee and J.-H. Kim, “Multiobjective particle swarm
optimization with preference-based sort and its application to path

following footstep optimization for humanoid robots,” IEEE

Transactions on Evolutionary Computation, vol. 17, no. 6, pp. 755–
766, Dec. 2013.

[8]. Chunyao FU1, Zhifang JIANG1, Wei WEI and Ang WEI “ An

Energy Balanced Algorithm of LEACH Protocol in WSN” IJCSI
International Journal of Computer Science Issues, Vol. 10, Issue 1,

No 1, January 2013.

[9]. Stefanos A. Nikolidakis 1, Dionisis Kandris 2, Dimitrios D.
Vergados 1 and Christos Douligeris 1, “Energy Efficient Routing in

Wireless Sensor Networks Through Balanced Clustering”
algorithms ISSN 1999-4893 www.mdpi.com/journal/algorithms

2013.

[10]. A. De La Piedra, F. Benitez-Capistros, F. Dominguez, and A.
Touhafi, “Wireless sensor networks for environmental research: A

survey on limitations and challenges,” in IEEE EUROCON,

Zagreb. IEEE, July. 2013, pp. 267–274.
[11]. Stefanos A. Nikolidakis 1, Dionisis Kandris 2, Dimitrios D.

Vergados 1 and Christos Douligeris 1, “Energy Efficient Routing in

Wireless Sensor Networks Through Balanced Clustering”
algorithms ISSN 1999-4893 www.mdpi.com/journal/algorithms

2013.

[12]. T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications

Letters, vol. 16, no. 11, pp. 1896–1899, Nov. 2012.

[13]. WANG Jin-wei, 2, SUN Hua-zhi, SUN De-bing, Research on the
Number of Optimal Cluster Heads of Wireless Sensor Networks

Based on Energy Consumption. Journal of Computer Research and

Development, 2008, 03.

