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Abstract: Recent significant research on wireless sensor networks (WSNs) has led to the widespread adoption of 

software defined wireless sensor networks (SDWSNs), which can be reconfigured even after deployment. In this paper, 

we propose an energy-efficient routing algorithm for SDWSNs. In this algorithm, to make the network to be functional, 

control nodes are selected to assign different tasks dynamically. The selection of control nodes is formulated as an NP-

hard problem, taking into consideration of the residual energy of the nodes and the transmission distance. To tackle the 

NP-hard problem, an efficient particle swarm optimization (PSO) algorithm is proposed. Simulation results show that 

the proposed algorithm performs well over other comparative algorithms under various scenarios. 
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I. INTRODUCTION 

 

The emergence of big data and cloud technology has 

driven a fast development of wireless sensor networks 

(WSNs). A sensor node is normally comprised of one or 

more sensor units, a power supply unit, a data processing 

unit, data storage, and a data transmission unit [1]. A 

wireless sensor network is a collection of wireless nodes 

with limited energy that may be mobile or stationary and 

are located randomly in a dynamically changing 

environment. Wireless sensor networks hold the promise 

of revolutionizing the way we observe and interact with 

the physical world in a wide range of application domains 

such as environmental sensing, habitat monitoring and 

tracking, military defense, etc. The characteristics of low-

cost, low-power, and multifunctional sensor have attracted 

a great deal of research attention, in that sensor nodes can 

perform intelligent cooperative tasks under stringent 

constrains in terms of energy and computational resources.  
 

However, most previous research work only considers the 

scenario where a WSN is dedicated to a single sensing 

task, and such application-specific WSN is prone to high 

deployment costs, low service reutilization and difficult 

hardware recycling [2]. A software-defined wireless 

sensor network (SDWSN) consists of software-defined 

sensor nodes that can dynamically reconfigure their 

functionalities and properties. by loading different 

programs on-demand according to real time sensing 

requests. SDWSNs are emerging as a compelling solution 

to tackle the above issues. A software-defined sensor node 

equipped with several different types of sensors is able to 

undertake a variety of sensing tasks according to deployed 

and activated programs. In recent years, especially due to 

the advent of forth coming 5G networks, a number of 

prototypes have been practically implemented. SDWSNs 

enable programmable control in network and virtualization 

of network equipment by decoupling the control plane and  

 

 

data plane [2]. In SDWSNs, control intelligence is taken 

out from data plane devices and implemented in a 

logically centralized controller (network operating system, 

however can be formed by distributed clusters), which 

interacts with data plane devices through standard 

interfaces. Network operators run software programs on 

the controller to automatically manage data plan devices 

and optimize network resource usage [1]. This architecture 

enables up-to-date control schemes to be developed and 

deployed so as to enable new smart sensing services, 

making simplified network management in WSNs, which 

makes the future of SDWSNs bright [3]. However, to 

realize the aforementioned advantages of SDWSNs is not 

without challenges. In a sensor network, each node acts as 

both a sensor and router, with limited computing and 

communications capabilities, and storage capacity.  
 

However, in many WSN applications, the deployment of 

sensor nodes is performed in harsh environments, which 

makes sensor replacement difficult and expensive [4]. 

Thus, in many scenarios, wireless nodes must operate 

without battery replacement for a long period of time. 

Consequently, the energy constraint is vital for the design 

of WSNs and SDWSNs. In an SDWSN, although different 

virtual networks can work together on top of the same 

physical infrastructure, the centralized control plane may 

lead to high energy costs due to information collection to 

reach a global view, and multiple virtual networks may 

compete for common physical network resources. 

Therefore, resource utilization of the SDWSN also needs 

to be carefully designed. In this paper, we consider the 

SDWSN as illustrated in Fig. 1 which consists of a sensor 

control server and a set of software-defined sensor nodes. 

The large scales of deployed nodes that are equipped with 

multi-functions are able to execute multi-tasks 

simultaneously. For example, a software defined node can 
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monitor the temperature and humidity at the same time. 

The sensor control server can reprogram some sensor 

nodes by distributing a corresponding program to them for 

the tasks. We divide the sensor nodes into clusters, each of 

which consists of a control node and a number of common 

nodes with different tasks, aiming at balancing the energy 

consumption of sensor nodes and avoiding the collision of 

data transmission. Like TinyOS [1], every SDWSN OS 

can support multi-tasking that executes independently and 

non preemptively. 

 

Traditional routing protocols in WSNs consume more 

energy for multi-tasking sensor networks because of the 

inflexibility. Therefore, based on the above architecture, 

we propose a new energy-efficient routing algorithm for 

software defined wireless sensor networks. Traditional 

routing protocols in WSNs consume more energy for 

multi-tasking sensor networks because of the inflexibility. 

 

 
Fig. 1 An example of the software-defined sensor network 

with multi-tasks 

 

Traditional routing protocols in WSNs consume more 

energy for multi-tasking sensor networks because of the 

inflexibility. Therefore, based on the above architecture, 

we propose a new energy-efficient routing algorithm for 

software defined wireless sensor networks. The control 

server selects the control nodes of each cluster, and the 

control nodes instruct the intra-cluster nodes to complete 

different tasks. In this project, we are motivated to 

investigate how to minimize the energy consumption if 

reprogramming by considering the control nodes’ 

selection and multicasting routing[1]. Our main 

contributions are summarized as follows: 
 

 We propose an energy-efficient routing algorithm for 

the multi-tasking SDWSNs. The selection of control 

nodes is formulated as an NP-hard problem, taking into 

account the residual energy of the nodes and the 

transmission distance; and 

 To tackle the NP-hard problem, we propose an efficient 

particle swarm optimization (PSO) algorithm solve it. 

 

II. OBJECTIVE 

 

The design of Energy efficiency wireless sensor network 

is a challenging research since battery is consider as power 

source to the sensor nodes. Recharging battery is very 

difficult and impossible in some cases. Methods/ Analysis: 

In Wireless sensor networks, clustering techniques consist 

of partitioning the network into a various number of sensor 

groups called clusters. The clustering technique selects the 

cluster heads in the rotation manner to perform data 

aggregation operation.  

 

Findings: To prolong the lifespan of a network, sensor 

nodes are scheduled to sleep dynamically. Sleep 

Scheduling (SS) mechanism is the most widely used 

technique for efficiently managing network energy 

consumption. In this paper, we provide a survey on 

energy-efficient scheduling mechanisms in Wireless 

sensor networks that has different network architecture 

than the traditional Wireless Sensor Networks. 

 

III. LITERATURE SURVEY 

 

A. RELATED WORK 

1. Overview of Software-Defined Wireless Sensor 

Network 

Overview of software-defined wireless sensor network the 

software-defined wireless sensor network represents a new 

paradigm shift that offers a significant promise to 

ubiquitous sensing and sensory data access through 

sensing as- a-service. Fig. 2 illustrates the logical view of 

the SDWSN. 

 

 
Fig. 2 A logical view of the SDWSN 

 

There are a few pioneering investigations that have been 

studied in the literature. Lecointre et al. [1] propose a 

software-defined radio interface for wireless sensor 

networks. Rossi et al. [2] present a system dubbed 

SYNAPSE++ for over-the-air reprogramming of wireless 

sensor networks.  
 

In [3], a die-hard sensor network is described, which can 

automatically monitor a disasterhit region by scattering 

many sensor nodes in the region. A TinyOS-based SDN 

framework that allows for multiple controllers within the 

WSN is presented in [4], which is hardware independent. 

Huang et al. propose a SDWSN prototype to improve the 

adaptability of WSNs for environmental monitoring 

applications, taking account of some constraints. The 

above existing works have demonstrated the feasibility of 

the SDWSN. Different from the above studies, this project 

focuses upon the energy efficiency in the network layer of 

the SDWSN, as shown in Fig. 2.1, as well as a particular 

emphasis on multi-task scheduling. 
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2. WSN Routing Algorithm 

Routing is important in the WSN in determining the 

optimum routing paths of data packets, and there have 

been a great number of popular routing algorithms for the 

WSN. Ad hoc On-demand Distant Vector (AODV) [5] 

was proposed in 1999, and became an IETE standard. It is 

a routing algorithm in consideration of the distance 

between the nodes. Its quick adaption to link conditions, 

low memory usage and low network utilization make the 

ADOV algorithm popular.  

 

However, the number of flooding messages increases 

significantly thanks to the increasing routing request 

messages. Clustering protocols can aid in data aggregation 

through efficient network organization. Low-energy 

adaptive clustering hierarchy (LEACH) [8] is one of the 

most well-known WSN hierarchical routing algorithms, 

which selects the cluster headers (CHs) based on a 

predetermined probability in order to rotate the CH role 

among the sensor nodes and to avoid fast depletion of the 

CH’s energy. LEACH operates in two phases, i.e., the 

cluster setup phase and the steady phase. In the cluster 

setup phase, the cluster heads are selected and then 

broadcast to other nodes. In the steady state phase, actual 

transmission of data occurs.  

 

However, the study of LEACH considers only energy 

consumption in receiving the advertisements from the CHs 

at each sensor node during the setup phase. The number of 

the cluster heads varies and the CHs do not have a good 

distribution. Furthermore, LEACH requires the 

transmission between the cluster heads and the sink to be 

completed in a single hop, which consumes a large 

quantity of energy and disrupts the energy balancing of 

nodes if the CHs are located far away from the sink. In [7], 

DF-LEACH is proposed as an improvement of LEACH, 

which takes into account the distance of the CH to the sink 

node, and thus saves communications energy. In [8], a 

hybrid energy-efficient distributed clustering approach 

(HEED) is proposed. The initial probability for each 

sensor to become a cluster head is dependent of its 

residual energy, and the performance results are fairly 

good. Hausdorff uses a greedy algorithm to select the 

cluster heads based on residual energy and location 

information, and this method can significantly prolong the 

network lifetime. In [9], an unequal cluster-based routing 

protocol is proposed, which focuses on load balancing in 

order to address the hot-spot issue. Mottola et al. [10] 

propose an adaptive energy-aware multi-sink routing 

algorithm, which is expressly designed for many-to-many 

communications. In [11], the authors address the issue of 

load balancing through considering different hop distances 

for the clusters. EDIT [13] is proposed to select the cluster 

head based on not only energy but also delay. The 

traditional routing algorithms are unable to adapt to the 

flexibility of SDWSNs. Consequently, we propose a new 

routing algorithm for the SDWSN, which can 

accommodate the SDWSN’s conditions flexibly and helps 

achieve better results. 

IV. SYSTEM DEVELOPMENT 

 

A. NETWORK MODEL 

In this paper, we consider the network architecture as 

shown in Fig. 1. G = (V;L) denotes the directed graph 

representing the network. V is the vertex set, including one 

control sever and a number of sensor nodes distributed 

within the monitoring field randomly. L is the set of 

directed links. The following assumptions on the sensor 

network and sensor nodes under consideration in this 

paper are made:  
 

 We consider a set of _ sensing targets, e.g., 

temperature, humidity, and so on, which are randomly 

distributed within the same region of the SDWSN [11]. 

 The resources in a sensor node should be managed, 

controlled and allocated in an orderly manner in 

support of various sensing tasks. Besides, to complete 

different tasks, corresponding programs are stored on 

the sensor nodes [1], and the sensor node shall allow 

application programmers to adjust the sensor 

functionalities via invoking different programs. 

  Each sensor node has the same ability to operate either 

in the sensing mode to perceive the environmental 

parameters or in the communications mode to send 

data among each other, or directly to the control server, 

and each node can gather data packets from a cluster 

member when acting as the control node. And each 

sensor node is assigned a unique identifier (ID). 

 The sensor nodes and control server are stationary after 

deployment, which is typical for sensor network 

applications. 

 Initial energy is fair to each sensor node, and the 

network is considered homogeneous; 

 All the nodes are left unattended without battery 

replacement after deployment. 

 Nodes are location-unaware, i.e., not equipped with 

GPS capable antennae or other similar equipment, and 

each node is assigned a number according to its 

location. 

 The links between the nodes are symmetric. A node 

can estimate the distance to another node based only on 

the received signal power. 

 The control server is externally powered. 

 

B. LEACH PROTOCOL 

LEACH Protocol is a typical representative of hierarchical 

routing protocols. It is self adaptive and self-organized. 

LEACH protocol uses round as unit, each round is made 

up of cluster set-up stage and steady-state stage[8], for the 

purpose of reducing unnecessary energy costs, the steady 

state stage must be much longer than the set-up stage. The 

process of it is shown in Figure 3. 
 

At the stage of cluster forming, a node randomly picks a 

number between 0 to 1, compared this number to the 

threshold values t(n) , if the number is less than t(n) , the 

it become cluster head in this round, else it become 

common node. 
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Fig.3. LEACH Protocol Process 

 

Threshold t(n) is determined by the following: 

 

 
 

Where p is the percentage of the cluster head no des in all 

nodes, r is the number of the round, G is the collections of 

the nodes that have not yet been head nodes in the first 1/P 

rounds. Using this threshold, al l nodes will be able to be 

head nodes after 1/P rounds. The analysis is as follows: 

Each node becomes a cluster head with probability p when 

the round begins, the nodes which have been head nodes 

in this round will not be head nodes in the next 1/P rounds, 

becausee the number of the nodes which is capable of 

head node will gradually reduce, so, for these remain 

nodes, the probability of being head nodes must be 

increased. After 1/P-1 round, all nodes which have not 

been head nodes will be selected as head nodes with 

probability 1, when 1/P rounds finished, all nodes will 

return to the same starting line. When clusters have 

formed, the nodes start to transmit the inspection data. 

Cluster heads receive data sent from the other nodes, the 

received data was sent to the gateway after fused. This is a 

frame data transmission. In order to reduce unnecessary 

energy cost, steady stage is composed of multiple frames 

and the steady stage is much longer than the set-up stage. 

 

C. ROUTING ALGORITHM BASED ON PSO 
Particle swarm optimization (PSO) is a population based 

stochastic optimization technique developed by Dr. 

Eberhart and Dr. Kennedy in 1995, inspired by social 

behaviour of bird flocking or fish schooling.PSO shares 

many similarities with evolutionary computation 

techniques such as Genetic Algorithms (GA). The system 

is initialized with a population of random solutions and 

searches for optima by updating generations. However, 

unlike GA, PSO has no evolution operators such as 

crossover and mutation. In PSO, the potential solutions, 

called particles, fly through the problem space by 

following the current optimum particles. The detailed 

information will be given in following sections. Compared 

to GA, the advantages of PSO are that PSO is easy to 

implement and there are few parameters to adjust. PSO 

has been successfully applied in many areas: function 

optimization, artificial neural network training, fuzzy 

system control, and other areas where GA can be applied 

[12].  

1. PSO Algorithm 

As stated before, PSO simulates the behaviours of bird 

flocking. Suppose the following scenario: a group of birds 

are randomly searching food in an area. There is only one 

piece of food in the area being searched. All the birds do 

not know where the food is. But they know how far the 

food is in each iteration. So what's the best strategy to find 

the food? The effective one is to follow the bird which is 

nearest to the food. PSO learned from the scenario and 

used it to solve the optimization problems. In PSO, each 

single solution is a "bird" in the search space. We call it 

"particle". All of particles have fitness values which are 

evaluated by the fitness function to be optimized, and have 

velocities which direct the flying of the particles[9]. The 

particles fly through the problem space by following the 

current optimum particles. PSO is initialized with a group 

of random particles (solutions) and then searches for 

optima by updating generations. In the every iteration, 

each particle is updated by following two "best" values. 

The first one is the best solution (fitness) it has achieved 

so far. (The fitness value is also stored.) This value is 

called pbest. Another "best" value that is tracked by the 

particle swarm optimizer is the best value, obtained so far 

by any particle in the population. This best value is a 

global best and called gbest[10]. When a particle takes 

part of the population as its topological neighbours, the 

best value is a local best and is called lbest. After finding 

the two best values, the particle updates its velocity and 

positions with following equation (a) and (b). 
 

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() 

*(gbest[]-present[])…..(a) 
 

present[]=persent[]+v[]...... (b) 

 

v[] is the particle velocity, persent[] is the current particle 

(solution). pbest[] and gbest[] are defined as stated before. 

rand () is a random number between (0,1). c1, c2 are 

learning factors. Usually c1 = c2 = 2[12].  

The pseudo code of the procedure is as follows. 

 

For each particle     

    Initialize particle 

END 

Do 

    For each particle  

        Calculate fitness value 

 If the fitness value is better than the best fitness value 

(pBest) in history set current value as the new pBest 

End 

Choose the particle with the best fitness value of all the 

particles as the gBest For each particle  

Calculate particle velocity according equation (a) 

Update particle position according equation (b) 

End  

While maximum iterations or minimum error criteria is 

not attained [13]. 
 

Particles' velocities on each dimension are clamped to a 

maximum velocity Vmax. If the sum of accelerations 
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would cause the velocity on that dimension to exceed 

Vmax, which is a parameter specified by the user. Then 

the velocity on that dimension is limited to Vmax. 

Particle swarm optimization (PSO) [5] is a population 

based stochastic optimization technique developed by 

Eberhart and Kennedy in 1995, inspired by the social 

behavior of birds flocking or fish schooling. PSO begins 

with a group of random particles (random solutions), 

aiming at finding out the optimum solution through an 

iterative process. 

 

 
Fig. 4. Flowchart of the PSO Algorithms 

 

Each particle has a fitness value, which will be evaluated 

by the fitness function to be optimized in each generation 

[1]. During the search process, each particle in the 

population consists of a d-dimensional vector including 

the velocity vector vi = [vi1; vi2; :::; vid], the current 

position vector (pBest) xi = [xi1; xi2; :::; xid], and the 

previous best position vector pi = [pi1; pi2; :::; pid], where 

d is the dimensionality of the search space. What’s more, 

the whole population maintains a global best-so-far 

population vector pg = [Pg1; pg2; :::; pgd] [3]. The 

flowchart of PSO is shown in Fig. 4. As can be seen from 

the figure, during each iteration of the evolutionary 

process in PSO, each particle learns from its own search 

experience pBest and the swarm’s search experience gBest 

to update its velocity vi and position xi [12, 13]. During 

the iterations, the velocity of the particle is updated 

according to the following 
 

vid(t+1) = wvid(t)+c1(pid -xid(t))+c2_(pgd -xid(t))……(5) 

The position of the particle is updated as follows 

xid(t + 1) = xid(t) + vij(t)…..(6) 

 

where the representation of vid is similar to that of xid; Pid 

and Pgd are the d
th

 dimension of the i
th

 particle’s velocity. 

Coefficients _ and _ are two randomly generated values 

within the range of [0; 1] for the d
th

 dimension. c1 and c2 

are two acceleration parameters which are commonly set 

to 2.0 or adaptively controlled according to the 

evolutionary states. Factor w is the inertial weight, which 

plays the role of controlling the impact of the previous 

velocity of a particle on the current one so as to balance 

between global search (large inertial weight) and local 

search (small inertial weight). However, PSO exhibits 

poor local search ability and often leads to premature 

convergence, especially in complex multipeak search 

problems. To tackle this issue, this paper proposes a 

method which adapts itself nonlinearly as follows 

w = (wmax- wmin � d1)* e
1/1+d

2
*t/K

 ……(7) 

 

where wmax and wmin represent the maximum and minimum 

inertial weights and are always set to 0.9 and 0.4, 

respectively. K is the maximum number of allowed 

iterations while t represents the current iteration. d1 and d2 

are two control factors which control the value of w 

between wmin and wmax. The execution of the algorithm is 

comprised of two phases, i.e., the control nodes’ selection 

phase and the data transmission phase. The two phases are 

performed in each round of the network operation and 

repeated periodically. We elaborate on how to use the non-

linear weight particle swarm optimization algorithm 

(NWPSO) to select the control nodes in the next section. 

 

2. Program 

clc; 

clear all; 

close all; 

swarm_size = 64;             

maxIter = 50;                   

inertia = 1.0; 

correction_factor = 2.0;         

a = 1:8; 

[X,Y] = meshgrid(a,a); 

C = cat(2,X',Y'); 

D = reshape(C,[],2); 

swarm(1:swarm_size,1,1:2) = D           

swarm(:,2,:) = 0; 

swarm(:,4,1) = 1000;                            

plotObjFcn = 0;                                      

objfcn =  @(x)(x(:,1) - 20).^2 + (x(:,2) - 25).^2; 

for iter = 1:maxIter 

    swarm(:, 1, 1) = swarm(:, 1, 1) + swarm(:, 2, 1)/1.3;         

swarm(:, 1, 2) = swarm(:, 1, 2) + swarm(:, 2, 2)/1.3;      

    x = swarm(:, 1, 1);                     

    y = swarm(:, 1, 2);                     

    fval = objfcn([x y]);                   

    for ii = 1:swarm_size 

        if fval(ii,1) < swarm(ii,4,1) 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 

ISO 3297:2007 Certified 

Vol. 6, Issue 1, January 2017 
 

Copyright to IJARCCE                                     DOI 10.17148/IJARCCE.2017.6148                                                      258 

            swarm(ii, 3, 1) = swarm(ii, 1, 1);                         

swarm(ii, 3, 2) = swarm(ii, 1, 2);                          

swarm(ii, 4, 1) = fval(ii,1);                              

        end 

    end    

 [~, gbest] = min(swarm(:, 4, 1)); 

swarm(:, 2, 1) = inertia*(rand(swarm_size,1).*swarm(:, 2, 

1)) + correction_factor*(rand(swarm_size,1).*(swarm(:, 3, 

1) ... - swarm(:, 1, 1))) +correction_factor* 

(rand(swarm_size,1).*(swarm(gbest, 3, 1) - swarm(:, 1, 

1)));    

    swarm(:, 2, 2) = inertia*(rand(swarm_size,1).*swarm(:, 

2, 2)) + correction_factor*(rand(swarm_size,1).*(swarm(:, 

3, 2) .. - swarm(:, 1, 2))) + correction_factor* 

(rand(swarm_size,1).*(swarm(gbest, 3, 2) - swarm(:, 1, 

2)));    

clf;plot(swarm(:, 1, 1), swarm(:, 1, 2), 'bx');      axis([-2 40 

-2 40]); 

 pause(.1);                                  

disp(['iteration: ' num2str(iter)]); 

end 

 

3. Simulation Result of PSO 

Figure 5 and 6 shows the result of PSO algorithm with 

multiple and single partical. 

 

 
Fig.5 simulation result of PSO for swarm node 

 

 
Fig. 6 Output of Single Node Based on Velocity and 

Position 
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